Towards the Automatic Design of More Efficient Digital Circuits

نویسندگان

  • Vesselin K. Vassilev
  • Dominic Job
  • Julian Francis Miller
چکیده

This paper introduces a new methodology of evolving electronic circuits by which the process of evolutionary design is guaranteed to produce a functionally correct solution. The method employs a mapping to represent an electronic circuit on an array of logic cells that is further encoded within a genotype. The mapping is many-to-one and thus there are many genotypes that have equal fitness values. Genotypes with equal fitness values define subgraphs in the resulting fitness landscapes referred to as neutral networks. This is further used in the design of a neutral network that connects the conventional with other more efficient designs. To explore such a network a navigation strategy is defined by which the space of all functionally correct circuits can be explored. The paper shows that very efficient digital circuits can be obtained by evolving from the conventional designs. Results for several binary multiplier circuits such as the three and four-bit multipliers are reported. The evolved solution for the three-bit multiplier consists of 23 two-input logic gates that in terms of number of two-input gates used is 23:3% more efficient than the most efficient known conventional design. The logic operators required to implement this circuit are 14 ANDs, 9 XORs, and 2 inversions (NOT). The evolved four-bit multiplier consists of 57 two-input logic gates that is 10:9% more efficient (in terms of number of two-input gates used) than the most efficient known conventional design. The optimal size of the target circuits is also studied by measuring the length of the neutral walks from the obtained designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

An efficient CAD tool for High-Level Synthesis of VLSI digital transformers

Digital transformers are considered as one of the digital circuits being widely used in signal and data processing systems, audio and video processing, medical signal processing as well as telecommunication systems. Transforms such as Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT) are among the ones being commonly used in this area. As an illu...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000